For the positive real numbers $ a,b,c$ prove the inequality \[ \frac {c}{a + 2b} + \frac {a}{b + 2c} + \frac {b}{c + 2a}\ge1. \]
Problem
Source: IZO 1 Junior Problem 4
Tags: inequalities, inequalities proposed
16.12.2008 04:12
16.12.2008 13:46
easy with caushy: $ \left(\frac{c}{a+2b}+\frac{a}{b+2c}+\frac{b}{c+2a}\right)(3(ab+bc+ac))\geq (a+b+c)^2$ $ \Leftrightarrow \left(\frac{c}{a+2b}+\frac{a}{b+2c}+\frac{b}{c+2a}\right) \geq \frac{(a+b+c)^2}{3(ab+bc+ac)}\geq1$
17.12.2008 05:52
Wasn't the same thing written by ghjk? Well one more method: Using Cauchy Lema We get the given expression $ \ge \dfrac{(\sum a)^2}{3\sum ab} \ge 1$ from the well known inequalities. Though this is the same, just posted it for those who wanted to see it done by this way.
17.12.2008 16:25
Aravind Srinivas L wrote: Wasn't the same thing written by ghjk? Well one more method: Using Cauchy Lema We get the given expression $ \ge \dfrac{(\sum a)^2}{3\sum ab} \ge 1$ from the well known inequalities. Though this is the same, just posted it for those who wanted to see it done by this way. You post was also the same as ghjk I see no difference in Cauchy Schwartz and Cauchy Lemma.
17.12.2008 16:58
Johan Gunardi wrote: For the positive real numbers $ a,b,c$ prove the inequality \[ \frac {c}{a + 2b} + \frac {a}{b + 2c} + \frac {b}{c + 2a}\ge1. \] Let $ x=a + 2b,y=b + 2c,x=c + 2a$ then we must prove $ \sum_{cyc} \frac{4y+z-2x}{9x}\ge 1$ or $ \sum_{cyc}\frac{4y+z}{x} \ge 15$ its obviously true by AM-GM
22.12.2008 01:01
For $ a,\ b,\ c$, prove that $ \frac{2007c}{2008a+2009b}+\frac{2008a}{2009b+2007c}+\frac{2009b}{2007c+2008a}\geq \frac{3}{2}$.
22.12.2008 12:38
kunny wrote: For $ a,\ b,\ c$, prove that $ \frac {2007c}{2008a + 2009b} + \frac {2008a}{2009b + 2007c} + \frac {2009b}{2007c + 2008a}\geq \frac {3}{2}$. Let $ 2007c=x$, $ 2008a=y$, and $ 2009b=z$, then our inequality takes form \[ \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} \ge 1.5\]
22.12.2008 14:02
a,b,c are positive real numbers ??? ... sorry I'm not good at English
22.12.2008 14:30
@kfc9512: it should be positive real lha.. assume that it's not positive, then let $ x=0,y=-1,z=2$ then $ LHS=0-\frac{1}{2}-2<\frac{3}{2}$.
22.12.2008 14:41
Sorry .... Also.. i'm not good at math.. thank you.. (and... \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} \ge 1.5by caushy)-just practice
13.05.2009 18:28
I've just found a really beautiful proof to this problem (inspired by a proof of Nesbitt's Inequality): Let $ P=\sum\frac{c}{a+2b}$, $ Q=\sum\frac{a}{a+2b}$, $ R=\sum\frac{b}{a+2b}$. By AM-GM, we have $ P+2Q=\sum\frac{c+2a}{a+2b}\ge3$ and $ 2P+R\ge\frac{2c+b}{a+2b}\ge3$. So $ 9P+2Q+4R=4(2P+R)+(P+2Q)\ge15$, but $ 2Q+4R=2(Q+2R)=6$, so $ P\ge1$. Q.E.D.
19.05.2009 14:12
Another approach is by brute force, after computations we get $ 2\sum_{cyc}{a^3} \geq 3abc + \sum_{cyc}{ a^2 (3c - 2b)} \Leftrightarrow {\underbrace{\sum_{cyc}{a^3} - 3abc}}_{\geq 0 } + {\underbrace{\sum_{cyc}{a^2(a + 3c -2b)}}_{\geq 0} \geq 0}$ for second sum we must prove somehow that is greater than zero
19.05.2009 20:13
Johan Gunardi wrote: For the positive real numbers $ a,b,c$ prove the inequality \[ \frac {c}{a + 2b} + \frac {a}{b + 2c} + \frac {b}{c + 2a}\ge1. \] $ \sum\frac{a}{b+2c}=\frac{a^2}{ab+2ca}\geq \frac{(a+b+c)^2}{3\sum ab}\geq 1$ from the trivial ineq
20.05.2009 01:15
See #2 popst. You should see the former post before you post.
09.02.2015 14:09
Hi Use titu"s lemma.
30.05.2016 09:03
it is just Cauchy Schwartz
30.05.2016 13:43
am i watching the similar problem too many times? I saw it above which the difference is just the number of variant became 4 instead of 3
23.11.2022 22:46
$c^2/(ac+2bc)+a^2/(ab+2ac)+b^2/(bc+2ab)>=1$ $(a+b+c)^2/3(ab+ac+bc)>=1$ $a^2+b^2+c^2>=ab+ac+bc$
30.12.2022 18:23
Titu lemma and easy problem
10.10.2024 20:27
$\frac{c^2}{ac+2bc}+\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}\geq\frac{(a+b+c)^2}{3(ab+ac+bc)}\geq1$
11.10.2024 06:00
My Approach using Titu's lemma \[ \frac{a}{b + 2c} + \frac{b}{c + 2a} + \frac{c}{a + 2b} = \frac{a^{2}}{a(b + 2c)} + \frac{b^{2}}{b(c + 2a)} + \frac{c^{2}}{c(a + 2b)} \]\[ \frac{a^{2}}{a(b + 2c)} + \frac{b^{2}}{b(c + 2a)} + \frac{c^{2}}{c(a + 2b)} \geq \frac{(a + b + c)^{2}}{\sum_{\text{cyc}} a(b + 2c)} \geq 1 \]\[ \implies \frac{a^{2} + b^{2} + c^{2} + 2(ab + bc + ca)}{3(ab + bc + ca)} \geq 1 \] \[ a^{2} + b^{2} + c^{2} + 2(ab + bc + ca) \geq 3(ab + bc + ca) \]\[ a^{2} + b^{2} + c^{2} \geq ab + bc + ca \]$$ \blacksquare $$
11.10.2024 07:34
jgnr wrote: For the positive real numbers $ a,b,c$ prove the inequality \[ \frac {c}{a + 2b} + \frac {a}{b + 2c} + \frac {b}{c + 2a}\ge1. \] Hey Bro use Titu's Lemma like we can write it as $ac/(a^2+2ab)+ab/(b^2+2bc)+bc/(c^2+2ac)>=a^2/(a^2+2ab)+b^2/(b^2+2bc)+c^2/(c^2+2ac)$ then after that we use titu's lemma: $>=(a+b+c)^2/(a+b+c)^2>=1$
11.10.2024 12:12
Let $ a,b,c >0 . $ Prove that $$ \frac {a}{b + kc} + \frac { b}{c +ka} + \frac {c}{a + kb} \geq \frac {3}{k + 1}$$Where $ k>0. $
11.10.2024 12:34
sqing wrote: Let $ a,b,c >0 . $ Prove that $$ \frac {a}{b + kc} + \frac { b}{c +ka} + \frac {c}{a + kb} \geq \frac {3}{k + 1}$$Where $ k>0. $ I did using Titu's Lemma, \[ \frac {a}{b + kc} + \frac { b}{c +ka} + \frac {c}{a + kb} = \frac {a^{2}}{a(b + kc)} + \frac { b^{2}}{b(c +ka)} + \frac {c^{2}}{c(a + kb)} \] Claim : $\frac {a^{2}}{a(b + kc)} + \frac { b^{2}}{b(c +ka)} + \frac {c^{2}}{c(a + kb)} \geq \frac{(a + b + c)^{2}}{(ab + bc + ca)(k + 1)} \geq \frac {3}{k + 1}$ Proof : $\frac{(a + b + c)^{2}}{(ab + bc + ca)(k + 1)} \geq \frac {3}{k + 1} = \frac{(a + b + c)^{2}}{(ab + bc + ca)} \geq 3 $ $(a + b + c)^{2} \geq 3(ab + bc + ca) \implies a^{2} + b^{2} + c^{2} + 2(ab + bc + ca) \geq 3(ab + bc + ca)$ $ \implies a^{2} + b^{2} + c^{2} \geq ab + bc + ca$ $ \blacksquare $
11.10.2024 12:50
Rmo level problem $\frac{c^2}{ac + 2b} + \frac{a^2}{ab + 2ac} + \frac{b^2}{bc + 2ab} \geq \frac{(a + b + c)^2}{3(ab + ac + bc)}$ by Titu's, and $(a + b + c)^2 \geq 3abc + 3ac + 3bc$ since $a^2 + b^2 + c^2 \geq ab + ac + bc$, so we are done.
11.10.2024 15:06