Problem

Source: IZO 1 Junior Problem 3

Tags: rotation, combinatorics proposed, combinatorics



Let $ A$ be a set of $ 2n$ points on the plane such that no three points are collinear. Prove that for any distinct two points $ a,b\in A$ there exists a line that partitions $ A$ into two subsets each containing $ n$ points and such that $ a,b$ lie on different sides of the line.