Problem

Source: Nigerian Mathematics olympiad round 2 2021 problem 5

Tags: geometry, cyclic quadrilateral, circumcircle, angle bisector



let $ABCD$ be a cyclic quadrilateral with $E$,an interior point such that $AB=AD=AE=BC$. Let $DE$ meet the circumcircle of $BEC$ again at $F$. Suppose a common tangent to the circumcircle of $BEC$ and $DEC$ touch the circles at $F$ and $G$ respectively. Show that $GE$ is the external angle bisector of angle $BEF$