let $x_1$, $x_2$ .... $x_6$ be non-negative reals such that $x_1+x_2+x_3+x_4+x_5+x_6=1$ and $x_1x_3x_5$ + $x_2x_4x_6$ $\geq$ $\frac{1}{540}$. Let $p$ and $q$ be relatively prime integers such that $\frac{p}{q}$ is the maximum value of $x_1x_2x_3+x_2x_3x_4+x_3x_4x_5+x_4x_5x_6+x_5x_6x_1+x_6x_1x_2$. Find $p+q$
Problem
Source: Nigerian Mathematics olympiad 2021 round 2 problem 4
Tags: algebra, inequalities, number theory, relatively prime