Let $a,b,k$ be positive integers such that $gcd(a,b)^2+lcm(a,b)^2+a^2b^2=2020^k$ Prove that $k$ is an even number.
Source: Brazil EGMO TST 2021 #2
Tags: number theory
Let $a,b,k$ be positive integers such that $gcd(a,b)^2+lcm(a,b)^2+a^2b^2=2020^k$ Prove that $k$ is an even number.