Problem

Source: A game on a network

Tags: function, combinatorics unsolved, combinatorics



There is a connected network with $ 2008$ computers, in which any of the two cycles don't have any common vertex. A hacker and a administrator are playing a game in this network. On the $ 1st$ move hacker selects one computer and hacks it, on the $ 2nd$ move administrator selects another computer and protects it. Then on every $ 2k+1th$ move hacker hacks one more computer(if he can) which wasn't protected by the administrator and is directly connected (with an edge) to a computer which was hacked by the hacker before and on every $ 2k+2th$ move administrator protects one more computer(if he can) which wasn't hacked by the hacker and is directly connected (with an edge) to a computer which was protected by the administrator before for every $ k>0$. If both of them can't make move, the game ends. Determine the maximum number of computers which the hacker can guarantee to hack at the end of the game.