Let $ABC$ be a triangle with incircle centered at $I$, tangent to sides $AC$ and $AB$ at $E$ and $F$ respectively. Let $N$ be the midpoint of major arc $BAC$. Let $IN$ intersect $EF$ at $K$, and $M$ be the midpoint of $BC$. Prove that $KM\perp EF$.
Problem
Source: Own. IMO 2021 Malaysian Training Camp 2
Tags: geometry
31.01.2021 14:16
Let $BI$, $CI$ intersect $EF$ at $S$, $R$. By the Iran lemma $BCRS$ is cyclic with center $M$. Obviously $BN$, $CN$ are tangents to $(BIC)$ so $IN$ is the A-symmedian of $\triangle BIC$. Now because $BC$ and $RS$ are antiparallel $K$ is the midpoint of $RS$ as desired.
31.01.2021 14:23
[asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(11cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 1.3684958677685986, xmax = 22.158495867768593, ymin = -12.348071074380178, ymax = 3.447928925619838; /* image dimensions */ /* draw figures */ draw((9.800495867768594,0.7765289256198357)--(8.08,-8.16), blue); draw((8.08,-8.16)--(20.84,-8.2), blue); draw((20.84,-8.2)--(9.800495867768594,0.7765289256198357), blue); draw(circle((14.470732018210908,-4.756486190720132), 7.2405360283990605)); draw(circle((11.906019829124801,-5.010392945637503), 3.1615853126020785)); draw((12.588024351080941,-3.0349734212138957)--(14.46,-8.18), red); draw((9.800495867768594,0.7765289256198357)--(11.906019829124801,-5.010392945637503)); draw((9.800495867768594,0.7765289256198357)--(14.493429511792344,2.4840142617575824)); draw((14.493429511792344,2.4840142617575824)--(14.46,-8.18)); draw((8.08,-8.16)--(9.509889986408975,-4.154927352103933)); draw((9.509889986408975,-4.154927352103933)--(20.84,-8.2)); draw((8.08,-8.16)--(15.666158861336946,-1.9150194373543004)); draw((15.666158861336946,-1.9150194373543004)--(20.84,-8.2)); draw((8.801447232659761,-4.412688434913765)--(15.666158861336946,-1.9150194373543004), red); draw((8.801447232659761,-4.412688434913765)--(11.906019829124801,-5.010392945637503)); draw((11.906019829124801,-5.010392945637503)--(13.900619849576985,-2.5573963196159077)); draw((11.906019829124801,-5.010392945637503)--(14.46,-8.18)); draw((3.2907540958251396,-8.144986689955566)--(11.906019829124801,-5.010392945637503)); draw((10.815671706586325,-8.168575773374878)--(14.493429511792344,2.4840142617575824)); draw((11.906019829124801,-5.010392945637503)--(11.896108952076682,-8.1719627239877)); draw((3.2907540958251396,-8.144986689955566)--(8.08,-8.16)); /* dots and labels */ dot((9.800495867768594,0.7765289256198357),linewidth(3.pt) + dotstyle); label("$A$", (9.068495867768597,1.0499289256198359), NE * labelscalefactor); dot((8.08,-8.16),linewidth(3.pt) + dotstyle); label("$B$", (7.7484958677685976,-8.872071074380173), NE * labelscalefactor); dot((20.84,-8.2),linewidth(3.pt) + dotstyle); label("$C$", (20.992495867768596,-8.982071074380174), NE * labelscalefactor); dot((11.906019829124801,-5.010392945637503),linewidth(3.pt) + dotstyle); label("$I$", (12.126495867768597,-5.902071074380171), NE * labelscalefactor); dot((13.900619849576985,-2.5573963196159077),linewidth(3.pt) + dotstyle); label("$E$", (13.930495867768597,-2.1620710743801674), NE * labelscalefactor); dot((8.801447232659761,-4.412688434913765),linewidth(3.pt) + dotstyle); label("$F$", (8.166495867768598,-4.076071074380169), NE * labelscalefactor); dot((14.46,-8.18),linewidth(3.pt) + dotstyle); label("$M$", (14.854495867768597,-8.894071074380173), NE * labelscalefactor); dot((14.493429511792344,2.4840142617575824),linewidth(3.pt) + dotstyle); label("$N$", (14.722495867768597,2.8319289256198377), NE * labelscalefactor); dot((12.588024351080941,-3.0349734212138957),linewidth(3.pt) + dotstyle); label("$K$", (12.060495867768596,-2.9320710743801683), NE * labelscalefactor); dot((9.509889986408975,-4.154927352103933),linewidth(3.pt) + dotstyle); label("$D$", (9.552495867768597,-3.856071074380169), NE * labelscalefactor); dot((15.666158861336946,-1.9150194373543004),linewidth(3.pt) + dotstyle); label("$G$", (15.778495867768596,-1.5020710743801668), NE * labelscalefactor); dot((3.2907540958251396,-8.144986689955566),linewidth(3.pt) + dotstyle); label("$J$", (3.3704958677685983,-8.982071074380174), NE * labelscalefactor); dot((10.815671706586325,-8.168575773374878),linewidth(3.pt) + dotstyle); label("$L$", (10.894495867768597,-8.872071074380173), NE * labelscalefactor); dot((11.896108952076682,-8.1719627239877),linewidth(3.pt) + dotstyle); label("$O$", (12.346495867768597,-8.806071074380174), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy] $\textit{Proof}$ Let $(I)$ tagents $\overline{BC}$ at $O$, $\overline{BI}\cap\overline{FE}=G$,$\overline{CI}\cap\overline{EF}=D$. The line passes through $I$ and parallel to $\overline{EF}$ meets $\overline{CB}$ at $J$, $\overline{NI}\cap\overline{BC}=L$. $\boxed{\textbf{Claim:}\ BDGC\quad\text{cyclic the cirlcle with radius}\quad \frac{BC}{2}}$ $\textit{Proof}$ We have $\angle EGI=90^o-\angle AIG=90^o-(180^o-\angle AIB)=90^o+\frac{\angle ACB}{2}-90^o=\angle ECI$ And hence $EGCI$ cyclic so $\angle IGC=\angle IEC=90^o\implies \overline{BG}\bot\overline{GC}$ Similarly we have $\overline{CD}\bot\overline{DB}$ and the complete the proof. $\quad\blacksquare$ And so $MD=MG$ (1). We have $\angle JIB=\angle DGB=\angle ICB\implies\quad JI^2=JB\cdot JC$ Easy to see that $\angle OIM=\angle IMN=180^o-\angle IMX=180^o-\angle XIN=\angle AIN$ with $X=\overline{NM}\cap\overline{AI}$ And so $\bigtriangleup IOM\sim\bigtriangleup IAN\implies \angle JMI=\angle IAN=\angle JIL\implies JI^2=JL\cdot JM$ So we have $JB\cdot JC=JL\cdot JM$ and since $M$ is the midpoint of $\overline{BC}\overset{\text{Maclaurin's theorem}}{\implies} (JL,BC)=-1$ Now we have $$-1=I(JL,BC)\overset{EF}{=}I(\infty_{EF}K,GD)\implies KG=KD\quad (2)$$By $(1),(2)$ we get that $\overline{MK}\bot\overline{DG}\equiv\overline{EF}$ and so the end the proof . \[\begin{tabular}{p{12cm}} $\rule{4cm}{0.5pt} \hspace{1cm} \bigstar \bigstar \hspace{1cm} \rule{4cm}{0.5pt}$ \\ \end{tabular} \\ \]
31.01.2021 16:07
Let $ N',M'$ be the antipode of $N$ and the midpoint of the $EF$ Since $N'I \perp EF$ it suffices to show that $\frac{N'M}{N'N}=\frac{IK}{IN}$. We have $\angle IAN =90$° then $ \frac{IK}{IN} =\frac{IM'}{IA} $ more $NBN'C\sim AFIE$ so $ \frac{IM'}{IA} = \frac{N'M}{N'N} $ therefore the result follows. RH HAS
02.02.2021 11:46
DNCT1 wrote: [asy][asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(11cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = 1.3684958677685986, xmax = 22.158495867768593, ymin = -12.348071074380178, ymax = 3.447928925619838; /* image dimensions */ /* draw figures */ draw((9.800495867768594,0.7765289256198357)--(8.08,-8.16), blue); draw((8.08,-8.16)--(20.84,-8.2), blue); draw((20.84,-8.2)--(9.800495867768594,0.7765289256198357), blue); draw(circle((14.470732018210908,-4.756486190720132), 7.2405360283990605)); draw(circle((11.906019829124801,-5.010392945637503), 3.1615853126020785)); draw((12.588024351080941,-3.0349734212138957)--(14.46,-8.18), red); draw((9.800495867768594,0.7765289256198357)--(11.906019829124801,-5.010392945637503)); draw((9.800495867768594,0.7765289256198357)--(14.493429511792344,2.4840142617575824)); draw((14.493429511792344,2.4840142617575824)--(14.46,-8.18)); draw((8.08,-8.16)--(9.509889986408975,-4.154927352103933)); draw((9.509889986408975,-4.154927352103933)--(20.84,-8.2)); draw((8.08,-8.16)--(15.666158861336946,-1.9150194373543004)); draw((15.666158861336946,-1.9150194373543004)--(20.84,-8.2)); draw((8.801447232659761,-4.412688434913765)--(15.666158861336946,-1.9150194373543004), red); draw((8.801447232659761,-4.412688434913765)--(11.906019829124801,-5.010392945637503)); draw((11.906019829124801,-5.010392945637503)--(13.900619849576985,-2.5573963196159077)); draw((11.906019829124801,-5.010392945637503)--(14.46,-8.18)); draw((3.2907540958251396,-8.144986689955566)--(11.906019829124801,-5.010392945637503)); draw((10.815671706586325,-8.168575773374878)--(14.493429511792344,2.4840142617575824)); draw((11.906019829124801,-5.010392945637503)--(11.896108952076682,-8.1719627239877)); draw((3.2907540958251396,-8.144986689955566)--(8.08,-8.16)); /* dots and labels */ dot((9.800495867768594,0.7765289256198357),linewidth(3.pt) + dotstyle); label("$A$", (9.068495867768597,1.0499289256198359), NE * labelscalefactor); dot((8.08,-8.16),linewidth(3.pt) + dotstyle); label("$B$", (7.7484958677685976,-8.872071074380173), NE * labelscalefactor); dot((20.84,-8.2),linewidth(3.pt) + dotstyle); label("$C$", (20.992495867768596,-8.982071074380174), NE * labelscalefactor); dot((11.906019829124801,-5.010392945637503),linewidth(3.pt) + dotstyle); label("$I$", (12.126495867768597,-5.902071074380171), NE * labelscalefactor); dot((13.900619849576985,-2.5573963196159077),linewidth(3.pt) + dotstyle); label("$E$", (13.930495867768597,-2.1620710743801674), NE * labelscalefactor); dot((8.801447232659761,-4.412688434913765),linewidth(3.pt) + dotstyle); label("$F$", (8.166495867768598,-4.076071074380169), NE * labelscalefactor); dot((14.46,-8.18),linewidth(3.pt) + dotstyle); label("$M$", (14.854495867768597,-8.894071074380173), NE * labelscalefactor); dot((14.493429511792344,2.4840142617575824),linewidth(3.pt) + dotstyle); label("$N$", (14.722495867768597,2.8319289256198377), NE * labelscalefactor); dot((12.588024351080941,-3.0349734212138957),linewidth(3.pt) + dotstyle); label("$K$", (12.060495867768596,-2.9320710743801683), NE * labelscalefactor); dot((9.509889986408975,-4.154927352103933),linewidth(3.pt) + dotstyle); label("$D$", (9.552495867768597,-3.856071074380169), NE * labelscalefactor); dot((15.666158861336946,-1.9150194373543004),linewidth(3.pt) + dotstyle); label("$G$", (15.778495867768596,-1.5020710743801668), NE * labelscalefactor); dot((3.2907540958251396,-8.144986689955566),linewidth(3.pt) + dotstyle); label("$J$", (3.3704958677685983,-8.982071074380174), NE * labelscalefactor); dot((10.815671706586325,-8.168575773374878),linewidth(3.pt) + dotstyle); label("$L$", (10.894495867768597,-8.872071074380173), NE * labelscalefactor); dot((11.896108952076682,-8.1719627239877),linewidth(3.pt) + dotstyle); label("$O$", (12.346495867768597,-8.806071074380174), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/asy] $\textit{Proof}$ Let $(I)$ tagents $\overline{BC}$ at $O$, $\overline{BI}\cap\overline{FE}=G$,$\overline{CI}\cap\overline{EF}=D$. The line passes through $I$ and parallel to $\overline{EF}$ meets $\overline{CB}$ at $J$, $\overline{NI}\cap\overline{BC}=L$. $\boxed{\textbf{Claim:}\ BDGC\quad\text{cyclic the cirlcle with radius}\quad \frac{BC}{2}}$ $\textit{Proof}$ We have $\angle EGI=90^o-\angle AIG=90^o-(180^o-\angle AIB)=90^o+\frac{\angle ACB}{2}-90^o=\angle ECI$ And hence $EGCI$ cyclic so $\angle IGC=\angle IEC=90^o\implies \overline{BG}\bot\overline{GC}$ Similarly we have $\overline{CD}\bot\overline{DB}$ and the complete the proof. $\quad\blacksquare$ And so $MD=MG$ (1). We have $\angle JIB=\angle DGB=\angle ICB\implies\quad JI^2=JB\cdot JC$ Easy to see that $\angle OIM=\angle IMN=180^o-\angle IMX=180^o-\angle XIN=\angle AIN$ with $X=\overline{NM}\cap\overline{AI}$ And so $\bigtriangleup IOM\sim\bigtriangleup IAN\implies \angle JMI=\angle IAN=\angle JIL\implies JI^2=JL\cdot JM$ So we have $JB\cdot JC=JL\cdot JM$ and since $M$ is the midpoint of $\overline{BC}\overset{\text{Maclaurin's theorem}}{\implies} (JL,BC)=-1$ Now we have $$-1=I(JL,BC)\overset{EF}{=}I(\infty_{EF}K,GD)\implies KG=KD\quad (2)$$By $(1),(2)$ we get that $\overline{MK}\bot\overline{DG}\equiv\overline{EF}$ and so the end the proof . \[\begin{tabular}{p{12cm}} $\rule{4cm}{0.5pt} \hspace{1cm} \bigstar \bigstar \hspace{1cm} \rule{4cm}{0.5pt}$ \\ \end{tabular} \\ \] Nice solution!
11.02.2022 02:45
My original solution: Let $P$ and $Q$ be the midpoint of minor arc $BC$ and midpoint of $EF$ respectively. It suffices to prove that $KM\parallel IP$, that is $$\frac{NK}{KI}=\frac{NM}{MP}$$But since $EF$ is parallel to $AN$, and the quadrilaterals $AEIF, NBPC$ are similar with points $Q$ corresponding to $M$ in the similarity, then $$\frac{NK}{KI}=\frac{AQ}{QI}=\frac{NM}{MP}$$as we needed. Nice solutions up there though!
11.02.2022 04:31
thinker123 wrote: OP wrote: Own. IMO 2021 Malaysian Training Camp 2 Contradict?? how is that a contradiction?
11.02.2022 05:50
megarnie wrote: thinker123 wrote: OP wrote: Own. IMO 2021 Malaysian Training Camp 2 Contradict?? how is that a contradiction? like how can the problem be their "own" as well as from IMO 2021 Malaysian training camp 2?
11.02.2022 05:51
Because they proposed the problem for the training camp.
11.02.2022 05:53
Simply check their status and they qualed for imo in Malaysia from 2015-2018. It makes sense that they would propose problems for the training camp.
11.02.2022 22:10
Hi, this is my proposal for the training camps indeed, and I am from Malaysia
11.02.2022 22:34
navi_09220114 wrote: Hi, this is my proposal for the training camps indeed, and I am from Malaysia orz
20.08.2023 05:16
28.08.2023 21:52
Let $AI\cap EF=R$ and $D$ be the antipode of $N$, then we know that $N$,$M$,$D$ and $A$,$I$,$D$ are collinear. Since $AD \perp EF$ we can finish with proving that $ID//KM$. Then we will prove that $NM/MD=NK/KI$. Since $AI\perp FE$ and $\angle DAN=90$ we have $EF//AN$, then $NK/KI=AR/RI$. It is easy to see that $AFI$ and $NCD$ triangles are similar and since $FR\perp AI$ and $CM\perp ND$ we have $AR/RI=NM/MD$, which means that $NK/KI=AR/RI=NM/MD$, so we are done:).
12.06.2024 23:20
Let the incircle be tangent to $BC$ at $D$, $S$ be the midpoint of the arc $BC$ not containing $A$ and $L$ be the foot of the altitude from $M$ to $EF$. $EF\cap BC=X$. e will show that $I,L,N$ are collinear. \[cos^2\frac{A}{2}=\frac{cos\frac{A}{2}.NC}{\frac{1}{cos A}.NC}=\frac{NM}{NS}\overset{?}{=} \frac{ML}{SI}=\frac{ML}{SB}=ML.cos\frac{A}{2}.\frac{1}{MB}\]\[ML\overset{?}{=}MB.cos\frac{A}{2}\]\[MB\overset{?}{=}\frac{ML}{cos\frac{A}{2}}=\frac{sin\frac{B-C}{2}.XM}{sin90-\frac{A}{2}}=\frac{BF}{XB}.XM=\frac{BD}{XB}.XM\]Since $(X,D;B,C)=-1,$ we have \[\frac{XB}{BD}=\frac{XM}{MB}\]Which gives the desired result.$\blacksquare$