Problem

Source: Own. IMO 2021 Malaysian Training Camp 2

Tags: geometry



Let $ABC$ be a triangle with incircle centered at $I$, tangent to sides $AC$ and $AB$ at $E$ and $F$ respectively. Let $N$ be the midpoint of major arc $BAC$. Let $IN$ intersect $EF$ at $K$, and $M$ be the midpoint of $BC$. Prove that $KM\perp EF$.