Problem

Source: Turkey NMO 2008 Problem 4

Tags: function, algebra unsolved, algebra



$ f: \mathbb N \times \mathbb Z \rightarrow \mathbb Z$ satisfy the given conditions $ a)$ $ f(0,0)=1$ , $ f(0,1)=1$ , $ b)$ $ \forall k \notin \left\{0,1\right\}$ $ f(0,k)=0$ and $ c)$ $ \forall n \geq 1$ and $ k$ , $ f(n,k)=f(n-1,k)+f(n-1,k-2n)$ find the sum $ \displaystyle\sum_{k=0}^{\binom{2009}{2}}f(2008,k)$