Problem

Source: 2019 Pan-African Shortlist - G3

Tags: geometry, cyclic quadrilateral



Let $ABCD$ be a cyclic quadrilateral with its diagonals intersecting at $E$. Let $M$ be the midpoint of $AB$. Suppose that $ME$ is perpendicular to $CD$. Show that either $AC$ is perpendicular to $BD$, or $AB$ is parallel to $CD$.