Problem

Source: Baltic Way 2008

Tags: inequalities, inequalities unsolved



Prove that if the real numbers $a,b$ and $c$ satisfy $a^2+b^2+c^2=3$ then \[\frac{a^2}{2+b+c^2}+\frac{b^2}{2+c+a^2}+\frac{c^2}{2+a+b^2}\ge\frac{(a+b+c)^2}{12}\] When does the inequality hold?