Let $ a,b,c$ be positive real numbers. Prove the inequality: $ \frac {a^3}{b^2} + \frac {b^3}{c^2} + \frac {c^3}{a^2}\ge \frac {a^2}{b} + \frac {b^2}{c} + \frac {c^2}{a}$
Problem
Source: JBMO Shortlist 2002
Tags: inequalities, vector, induction, inequalities proposed
12.11.2008 16:35
Bugi wrote: Let $ a,b,c$ be positive real numbers. Prove the inequality: $ \frac {a^3}{b^2} + \frac {b^3}{c^2} + \frac {c^3}{a^2}\ge \frac {a^2}{b} + \frac {b^2}{c} + \frac {c^2}{a}$ By cauchy-swartz: $ (\sum_{cyc} \frac {a^3}{b^2})(\sum_{cyc} a) \ge \left ( \sum_{cyc} \frac{a^2}{b} \right )^2$. So it suffices to prove: $ \sum_{cyc} \frac{a^2}{b} \ge \sum_{cyc} a$. Which is just cauchy-swartz again: $ (\sum_{cyc} \frac{a^2}{b})(\sum_{cyc} b) \ge \left ( \sum_{cyc} a \right )^2$
12.11.2008 18:25
Or just use this lemma $ \frac{a^3}{b^2}\geq \frac{a^2}{b}+a-b$
15.11.2008 15:58
18.11.2008 03:09
Consider the Muirhead's inequality for the real vectors: $ \lambda = (3,0, - 2)$ and $ \mu = (2,0, - 1) \implies (3,0, - 2) \succ (2,0, - 1)$ $ \implies \displaystyle \dfrac {a^3}{b^2} + \displaystyle \dfrac {a^3}{c^2} + \displaystyle \dfrac {b^3}{a^2} + \displaystyle \dfrac {b^3}{c^2} + \displaystyle \dfrac {c^3}{a^2} + \displaystyle \dfrac {c^3}{b^2} \ge \displaystyle \dfrac {a^2}{b} + \displaystyle \dfrac {a^2}{c} + \displaystyle \dfrac {b^2}{a} + \displaystyle \dfrac {b^2}{c} + \displaystyle \dfrac {c^2}{a} + \displaystyle \dfrac {c^2}{b}$ This last expression is the sum of the two following inequalities: $ \displaystyle \dfrac {a^3}{b^2} + \displaystyle \dfrac {b^3}{c^2} + \displaystyle \dfrac {c^3}{a^2} \ge \displaystyle \dfrac {a^2}{b} + \dfrac {b^2}{c} + \displaystyle \dfrac {c^2}{a}$ $ \displaystyle \dfrac {a^3}{c^2} + \displaystyle \dfrac {b^3}{a^2} + \displaystyle \dfrac {c^2}{b} \ge \displaystyle \dfrac {a^2}{c} + \displaystyle \dfrac {b^2}{a} + \displaystyle \dfrac {c^2}{b}$. And we are done.
18.11.2008 21:20
I think it's not a good solution... You prove that at least one of the inequalities is good.
19.11.2008 00:17
limes123 wrote: I think it's not a good solution... You prove that at least one of the inequalities is good. Yes, I saw my mistake. I'm going to edit my solution sorry
19.11.2008 00:21
makmat wrote: Consider the Muirhead's inequality for the real vectors: $ \lambda = (3,0, - 2)$ and $ \mu = (2,0, - 1) \implies (3,0, - 2) \succ (2,0, - 1)$ $ \implies \displaystyle \dfrac {a^3}{b^2} + \displaystyle \dfrac {a^3}{c^2} + \displaystyle \dfrac {b^3}{a^2} + \displaystyle \dfrac {b^3}{c^2} + \displaystyle \dfrac {c^3}{a^2} + \displaystyle \dfrac {c^3}{b^2} \ge \displaystyle \dfrac {a^2}{b} + \displaystyle \dfrac {a^2}{c} + \displaystyle \dfrac {b^2}{a} + \displaystyle \dfrac {b^2}{c} + \displaystyle \dfrac {c^2}{a} + \displaystyle \dfrac {c^2}{b}$ This last expression is the sum of the two following inequalities: $ \displaystyle \dfrac {a^3}{b^2} + \displaystyle \dfrac {b^3}{c^2} + \displaystyle \dfrac {c^3}{a^2} \ge \displaystyle \dfrac {a^2}{b} + \dfrac {b^2}{c} + \displaystyle \dfrac {c^2}{a}$ $ \displaystyle \dfrac {a^3}{c^2} + \displaystyle \dfrac {b^3}{a^2} + \displaystyle \dfrac {c^2}{b} \ge \displaystyle \dfrac {a^2}{c} + \displaystyle \dfrac {b^2}{a} + \displaystyle \dfrac {c^2}{b}$. And we are done. That's a wrong solution. $ a+b \ge 2c$ doesn't nescesarily mean $ a \ge c$ and $ b \ge c$. But you can do it with AM-GM: $ \frac{14\frac{a^3}{b^2}+3\frac{b^3}{c^2}+2\frac{c^3}{a^2}}{19} \ge \frac{a^2}{b}$
20.11.2008 14:43
I think these inequalities for positive numbers are more interesting: $ (1) \ \ \ \ \ \ \ \ \ \ \ \ \ \frac {a^6}{b^3}+\frac {b^6}{c^3}+\frac {c^6}{a^3}\ge \frac {b^4}{a}+\frac {c^4}{b}+\frac {a^4}{c}$; $ (2) \ \ \ \ \ \frac {a^{14}}{b^7}+\frac {b^{14}}{c^7}+\frac {c^{14}}{d^7}+\frac {d^{14}}{a^7}\ge \frac {b^8}{a}+\frac {c^8}{b}+\frac {d^8}{c}+\frac{a^8}{d}$.
20.11.2008 15:01
1/$ 3\sum\frac {a^6}{b^3} = \sum(\frac {b^6}{c^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3})\geq 3\sum\frac {b^4}{a}$ 2/$ 7\sum\frac {a^{14}}{b^7} = \sum(4\frac {b^{14}}{c^7} + 2\frac {c^{14}}{d^7} + \frac {d^{14}}{a^7})\geq 7\sum\frac {b^8}{a}$
20.11.2008 22:25
karis wrote: 1/$ 3\sum\frac {a^6}{b^3} = \sum(\frac {b^6}{c^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3})\geq 3\sum\frac {b^4}{a}$ 2/$ 7\sum\frac {a^{14}}{b^7} = \sum(4\frac {b^{14}}{c^7} + 2\frac {c^{14}}{d^7} + \frac {d^{14}}{a^7})\geq 7\sum\frac {b^8}{a}$ Nice, karis. Can you generalize this inequality to $ n$ positive numbers ?
21.11.2008 00:50
Vasc wrote: karis wrote: 1/$ 3\sum\frac {a^6}{b^3} = \sum(\frac {b^6}{c^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3})\geq 3\sum\frac {b^4}{a}$ 2/$ 7\sum\frac {a^{14}}{b^7} = \sum(4\frac {b^{14}}{c^7} + 2\frac {c^{14}}{d^7} + \frac {d^{14}}{a^7})\geq 7\sum\frac {b^8}{a}$ Nice, karis. Can you generalize this inequality to $ n$ positive numbers ? We want to show: $ \frac{a^n}{b^{n-k}} + \frac{b^n}{c^{n-k}} + \frac{c^n}{a^{n-k}} \ge \frac{a^m}{b^{m-k}} + \frac{b^m}{c^{m-k}} + \frac{c^m}{a^{m-k}}$ for $ n,m,k \in \mathbb{N}$, $ n > m$, and $ a,b,c > 0$. This can be proven by induction: $ (\sum_{cyc} \frac{a^m}{b^{m-k}})(\sum_{cyc} \frac{a^{m-2k}}{b^{m-3k}}) \ge (\sum_{cyc} \frac{a^{m-k}}{b^{m-2k}})^2$. And it follows easily from here. (Since by using induction $ \sum_{cyc} \frac{a^{m-2k}}{b^{m-3k}} \le \sum_{cyc} \frac{a^{m-k}}{b^{m-2k}}$) (This can be generalized to $ x_1,x_2,..,x_n$ instead of $ a,b,c$ just by changing variables)
21.11.2008 10:17
Mathias_DK wrote: Vasc wrote: karis wrote: 1/$ 3\sum\frac {a^6}{b^3} = \sum(\frac {b^6}{c^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3})\geq 3\sum\frac {b^4}{a}$ 2/$ 7\sum\frac {a^{14}}{b^7} = \sum(4\frac {b^{14}}{c^7} + 2\frac {c^{14}}{d^7} + \frac {d^{14}}{a^7})\geq 7\sum\frac {b^8}{a}$ Nice, karis. Can you generalize this inequality to $ n$ positive numbers ? We want to show: $ \frac {a^n}{b^{n - k}} + \frac {b^n}{c^{n - k}} + \frac {c^n}{a^{n - k}} \ge \frac {a^m}{b^{m - k}} + \frac {b^m}{c^{m - k}} + \frac {c^m}{a^{m - k}}$ for $ n,m,k \in \mathbb{N}$, $ n > m$, and $ a,b,c > 0$. This is a generalization of the original inequality, not of these inequalities above.
21.11.2008 12:32
Vasc wrote: Mathias_DK wrote: Vasc wrote: karis wrote: 1/$ 3\sum\frac {a^6}{b^3} = \sum(\frac {b^6}{c^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3})\geq 3\sum\frac {b^4}{a}$ 2/$ 7\sum\frac {a^{14}}{b^7} = \sum(4\frac {b^{14}}{c^7} + 2\frac {c^{14}}{d^7} + \frac {d^{14}}{a^7})\geq 7\sum\frac {b^8}{a}$ Nice, karis. Can you generalize this inequality to $ n$ positive numbers ? We want to show: $ \frac {a^n}{b^{n - k}} + \frac {b^n}{c^{n - k}} + \frac {c^n}{a^{n - k}} \ge \frac {a^m}{b^{m - k}} + \frac {b^m}{c^{m - k}} + \frac {c^m}{a^{m - k}}$ for $ n,m,k \in \mathbb{N}$, $ n > m$, and $ a,b,c > 0$. Vasc wrote: This is a generalization of the original inequality, not of these inequalities above. Could you please explain what the generalisation should be then? (This does also include the inequalities you wrote above, so I'm a bit confused about which generalisation you are talking about ) The first you get by $ n=6>m=4$ and $ k=3$. The second by $ n = 14>m=8$ and $ k=7$.
21.11.2008 23:16
Mathias_DK wrote: The first you get by $ n = 6 > m = 4$ and $ k = 3$. The second by $ n = 14 > m = 8$ and $ k = 7$. For $ n = 6 > m = 4$ and $ k = 3$, we get $ \frac {a^6}{b^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3}\ge \frac {a^4}{b} + \frac {b^4}{c} + \frac {c^4}{a}$, which is not the desired inequality $ \frac {a^6}{b^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3}\ge \frac {b^4}{a} + \frac {c^4}{b} + \frac {a^4}{c}$.
22.11.2008 01:22
Vasc wrote: Mathias_DK wrote: The first you get by $ n = 6 > m = 4$ and $ k = 3$. The second by $ n = 14 > m = 8$ and $ k = 7$. For $ n = 6 > m = 4$ and $ k = 3$, we get $ \frac {a^6}{b^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3}\ge \frac {a^4}{b} + \frac {b^4}{c} + \frac {c^4}{a}$, which is not the desired inequality $ \frac {a^6}{b^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3}\ge \frac {b^4}{a} + \frac {c^4}{b} + \frac {a^4}{c}$. You are right! I missed that
22.11.2008 15:34
Generalize with 3 variable Let $ a;b;c\geq 0: n;m;k\in Z^+;n>m>k$ satisfying $ \frac{n}{m}+\frac{k}{n}=2:$ $ \sum\frac{a^n}{b^{n-k}}\geq\frac{b^m}{a^{m-k}}$
09.01.2010 12:35
Vasc wrote: karis wrote: 1/$ 3\sum\frac {a^6}{b^3} = \sum(\frac {b^6}{c^3} + \frac {b^6}{c^3} + \frac {c^6}{a^3})\geq 3\sum\frac {b^4}{a}$ 2/$ 7\sum\frac {a^{14}}{b^7} = \sum(4\frac {b^{14}}{c^7} + 2\frac {c^{14}}{d^7} + \frac {d^{14}}{a^7})\geq 7\sum\frac {b^8}{a}$ Nice, karis. Can you generalize this inequality to $ n$ positive numbers ? Straightforward: Let $ m: = 2^{n - 1} - 1 = \sum_{j = 0}^{n - 2}2^{n - 2 - j}$. Then \[ m\sum_{cyc}\frac {a_i^{2m}}{a_{i + 1}^m} = \sum_{cyc}\left(\sum_{j = 0}^{n - 2}2^{n - 2 - j}\frac {a_{j + 1}^{2m}}{a_{j + 2}^{m}}\right)\stackrel{AM - GM }{\ge}m\sum_{cyc}\frac {a_{i + 1}^{m + 1}}{a_{i}}.\] After AM-GM, each inner sum (or rather product then) telescopes.
22.08.2010 12:45
Inequality Of BMO Let a1,a2,…,an>0,an+1= a1,prove that i=1Σnaik+1aik+1≥i=1Σnaikai+1k1, As aik+1+ai+1k+1≥aikai+1+aik+1ai, i=1,2,…,n. So aik+1aik+1+ai+1≥aikai+1k1+ai. aik+1aik+1≥aikai+1k1+ai-ai+1.so i=1Σnaik+1ika+1≥i=1Σnaikai+1k1.
Attachments:
Inequality Of BMO.pdf (64kb)
Inequality Of BMO.pdf (64kb)
27.10.2016 14:15
The generalization is very nice inequality if you do not use Muirhead.
20.05.2020 18:32
Bugi wrote: Let $ a,b,c$ be positive real numbers. Prove the inequality: $$ \frac {a^3}{b^2} + \frac {b^3}{c^2} + \frac {c^3}{a^2}\ge \frac {a^2}{b} + \frac {b^2}{c} + \frac {c^2}{a}$$ For $a,b,c>0$ such that $a+b+c=3$. Prove that $$\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge 2(a^2+b^2+c^2)-3$$
20.05.2020 18:59
Bugi wrote: Let $ a,b,c$ be positive real numbers. Prove the inequality: $ \frac {a^3}{b^2} + \frac {b^3}{c^2} + \frac {c^3}{a^2}\ge \frac {a^2}{b} + \frac {b^2}{c} + \frac {c^2}{a}$
I'm pretty sure my solution is wrong, thanks to @ below
20.05.2020 20:55
Greenleaf5002 wrote: Note that the sequences $[a^4c, b^4a, c^4b]$ and $\left[\frac{1}{a^2bc},\frac{1}{ab^2c},\frac{1}{ab^2c}\right]$ are oppositely sorted. Firstly, maybe do you mean $[a^4c, b^4a, c^4b]$ and $\left[\frac{1}{a^2bc},\frac{1}{ab^2c},\frac{1}{abc^2}\right]$? If so, are you sure that $a\geq b\geq c$ gives $a^4c\geq b^4a\geq c^4b$?
20.05.2020 21:48
redacted.
21.05.2020 15:39
Greenleaf5002 wrote: as we cannot assume $a\geq b\geq c$ for a cyclic expression anyway But your second triple is symmetric. OK. Explain please why these sequences are oppositely sorted?
21.05.2020 18:01
What is JBMO ?
21.05.2020 18:04
Junior Balkan Math Olympiad
21.05.2020 18:06
Is it possible to use rearrangement inequality?
30.08.2020 05:25
Clearing the denominators, we have \[a^5c^2+b^5a^2+c^5b^2\geq a^4bc^2+b^4ca^2+c^4ab^2.\]Let $a\geq b \geq c$, then use $\{a^4,b^4,c^4\}$ with $\{ac^2,ba^2, cb^2\}$ and $\{bc^2, ca^2, ab^2\}$ and by rearrangement inequality, the result follows.
04.01.2023 00:31
Hello! $\sum{\frac{a^3}{b^2}} \geq \sum{\frac{a^2}{b}}$ $\text{With Rearrangement inequality}$ $\implies $ $\boxed{A:\frac{c^2}{a}\geq\frac{b^2} {c}\geq\frac{a^2}{b}}$ $\boxed{B:\frac{c}{a}\geq\frac{b}{c}\geq\frac{a}{b}}$ $3\sum{\frac{a^3}{b^2}}\geq (\sum{\frac{a^2}{b}})(\sum{\frac{a}{b}})\geq 3(\sum{\frac{a^2}{b}})$ $\sum{\frac{a}{b}}\geq3$ Which is true for Am-Gm And we are done
14.02.2025 01:57
Using Cauchy-Schwarz twice you get the desired result.