Let $m,n,k$ be pairwise relatively prime positive integers greater than $3$. Find the minimal possible number of points on the plane with the following property: there are $x$ of them which are the vertices of a regular $x$-gon for $x = m, x = n, x = k$. (E.Piryutko)
Problem
Source: 2012 Belarus TST 8.1
Tags: combinatorial geometry, geometry, combinatorics, regular polygon, Regular