Problem

Source: European Mathematical Cup 2020, Problem J4

Tags: inequalities, emc



Let \(a,b,c\) be positive real numbers such that \(ab+bc+ac = a+b+c\). Prove the following inequality: \[\sqrt{a+\frac{b}{c}} + \sqrt{b+\frac{c}{a}} + \sqrt{c+\frac{a}{b}} \leq \sqrt{2} \cdot \min \left\{ \frac{a}{b}+\frac{b}{c}+\frac{c}{a},\ \frac{b}{a}+\frac{c}{b}+\frac{a}{c} \right\}.\] Proposed by Dorlir Ahmeti.