Circles $ \mathcal{C}_1$ and $ \mathcal{C}_2$ intersect at $ A$ and $ B$. Let $ M\in AB$. A line through $ M$ (different from $ AB$) cuts circles $ \mathcal{C}_1$ and $ \mathcal{C}_2$ at $ Z,D,E,C$ respectively such that $ D,E\in ZC$. Perpendiculars at $ B$ to the lines $ EB,ZB$ and $ AD$ respectively cut circle $ \mathcal{C}_2$ in $ F,K$ and $ N$. Prove that $ KF=NC$.