Problem

Source: December 2020 Ukraine Geometry Olympiad X p5 , XI p4

Tags: geometry, circles



Let $\Gamma_1$, $\Gamma_2$ be two circles, where$ \Gamma_1$ has a smaller radius, intersect at two points $A$ and $B$. Points $C, D$ lie on $\Gamma_1$, $\Gamma_2$ respectively so that the point $A$ is the midpoint of the segment $CD$ . Line$ CB$ intersects the circle $\Gamma_2$ for the second time at the point $F$, line $DB$ intersects the circle $\Gamma_1$ for the second time at the point $E$. The perpendicular bisectors of the segments $CD$ and $EF$ intersect at a point $P$. Knowing that $CA =12$ and $PE = 5$ , find $AP$.