For every nonnegative integer $ n$ and every real number $ x$ prove the inequality: $ |\cos x|+|\cos 2x|+\ldots+|\cos 2^nx|\geq \dfrac{n}{2\sqrt{2}}$
Source: Moldova NMO 2002 grade 11 problem nr.2
Tags: trigonometry, inequalities, algebra
For every nonnegative integer $ n$ and every real number $ x$ prove the inequality: $ |\cos x|+|\cos 2x|+\ldots+|\cos 2^nx|\geq \dfrac{n}{2\sqrt{2}}$