Problem

Source: Moldova NMO 2002 grade 10 problem nr.6

Tags: logarithms, inequalities



Let $ a,b,c\in \mathbb R$ such that $ a\ge b\ge c > 1$. Prove the inequality: $ \log_c\log_c b + \log_b\log_b a + \log_a\log_a c\geq 0$