The sides $ AB$,$ BC$ and $ CA$ of the triangle $ ABC$ are tangent to the incircle of the triangle $ ABC$ with center $ I$ at the points $ C_1$,$ A_1$ and $ B_1$, respectively.Let $ B_2$ be the midpoint of the side $ AC$.Prove that the lines $ B_1I$, $ A_1C_1$ and $ BB_2$ are concurrent.