If $ a_1,a_2,\cdots,a_n(n\geq2)$ be natural numbers such that
$ a_1 < a_2 < \cdots < a_n$ and $ \sum_{k = 1}^{n}\frac {1}{a_k}\leq1$,
then the following inequlity
$ \left(\sum_{k = 1}^{n}\frac {1}{a_{k}^2 + x}\right)^2\leq \frac {m}{a_1(a_1 - 1) + x}$
holds for all nonnegative real number $ x$ if $ m = 0.3229383\cdots$,
which is unique real root of the following irreducible polynomial over $ \mathbb{Q}:$
$ 5180741959680000m^5 - 10225012469299200m^4 + 7842687249241912m^3$
$ - 2829413217657726m^2 + 654489379537533m - 87403180032000;$
with equality if and only if $ n = 3,a_1 = 2,a_2 = 3, a_3 = 6, x = 1.6248\cdots$,
which is unique real root of the following irreducible polynomial over $ \mathbb{Q}:$
$ 3x^5 + 159x^4 + 3570x^3 + 24464x^2 + 39456x - 145152.$