Problem

Source: Moldova NMO 2002 grade 9 problem nr.1

Tags: function, inequalities, triangle inequality



Consider the real numbers $ a\ne 0,b,c$ such that the function $ f(x) = ax^2 + bx + c$ satisfies $ |f(x)|\le 1$ for all $ x\in [0,1]$. Find the greatest possible value of $ |a| + |b| + |c|$.