In a triangle $ ABC$, the bisectors of the angles at $ B$ and $ C$ meet the opposite sides $ B_1$ and $ C_1$, respectively. Let $ T$ be the midpoint $ AB_1$. Lines $ BT$ and $ B_1C_1$ meet at $ E$ and lines $ AB$ and $ CE$ meet at $ L$. Prove that the lines $ TL$ and $ B_1C_1$ have a point in common.