Problem

Source: Moldova NMO 2002 grade 8 problem nr.3

Tags:



Consider a circle $ \Gamma(O,R)$ and a point $ P$ found in the interior of this circle. Consider a chord $ AB$ of $ \Gamma$ that passes through $ P$. Suppose that the tangents to $ \Gamma$ at the points $ A$ and $ B$ intersect at $ Q$. Let $ M\in QA$ and $ N\in QB$ s.t. $ PM\perp QA$ and $ PN\perp QB$. Prove that the value of $ \frac {1}{PN} + \frac {1}{PM}$ doesn't depend of choosing the chord $ AB$.