Problem

Source: 2020 Dutch BxMO TST p4

Tags: equal segments, Equilateral, geometry



Three different points $A,B$ and $C$ lie on a circle with center $M$ so that $| AB | = | BC |$. Point $D$ is inside the circle in such a way that $\vartriangle BCD$ is equilateral. Let $F$ be the second intersection of $AD$ with the circle . Prove that $| F D | = | FM |$.