Problem

Source: 2020 Dutch BxMO TST p2

Tags: geometry, Concyclic, cyclic quadrilateral



In an acute-angled triangle $ABC, D$ is the foot of the altitude from $A$. Let $D_1$ and $D_2$ be the symmetric points of $D$ wrt $AB$ and $AC$, respectively. Let $E_1$ be the intersection of $BC$ and the line through $D_1$ parallel to $AB$ . Let $E_2$ be the intersection of$ BC$ and the line through $D_2$ parallel to $AC$. Prove that $D_1, D_2, E_1$ and $E_2$ on one circle whose center lies on the circumscribed circle of $\vartriangle ABC$.