Problem

Source: 2021 Taiwan APMO Preliminary First Round

Tags: geometry, incenter, parallelogram



(a) Let the incenter of $\triangle ABC$ be $I$. We connect $I$ other $3$ vertices and divide $\triangle ABC$ into $3$ small triangles which has area $2,3$ and $4$. Find the area of the inscribed circle of $\triangle ABC$. (b) Let $ABCD$ be a parallelogram. Point $E,F$ is on $AB,BC$ respectively. If $[AED]=7,[EBF]=3,[CDF]=6$, then find $[DEF].$ (Here $[XYZ]$ denotes the area of $XYZ$)