Problem

Source: Baltic Way 2020, Problem 12

Tags: geometry, geometry proposed



Let $ABC$ be a triangle with circumcircle $\omega$. The internal angle bisectors of $\angle ABC$ and $\angle ACB$ intersect $\omega$ at $X\neq B$ and $Y\neq C$, respectively. Let $K$ be a point on $CX$ such that $\angle KAC = 90^\circ$. Similarly, let $L$ be a point on $BY$ such that $\angle LAB = 90^\circ$. Let $S$ be the midpoint of arc $CAB$ of $\omega$. Prove that $SK=SL$.