Problem

Source: Baltic Way 2020, Problem 11

Tags: geometry, geometry proposed



Let $ABC$ be a triangle with $AB > AC$. The internal angle bisector of $\angle BAC$ intersects the side $BC$ at $D$. The circles with diameters $BD$ and $CD$ intersect the circumcircle of $\triangle ABC$ a second time at $P \not= B$ and $Q \not= C$, respectively. The lines $PQ$ and $BC$ intersect at $X$. Prove that $AX$ is tangent to the circumcircle of $\triangle ABC$.