Problem

Source: Baltic Way 2020, Problem 1

Tags: Inequality, algebra, algebra proposed, Sequence, recursion



Let $a_0>0$ be a real number, and let $$a_n=\frac{a_{n-1}}{\sqrt{1+2020\cdot a_{n-1}^2}}, \quad \textrm{for } n=1,2,\ldots ,2020.$$Show that $a_{2020}<\frac1{2020}$.