Problem

Source: BMO SL 2019, G2

Tags: geometry



Let be a triangle $\triangle ABC$ with $m(\angle ABC) = 75^{\circ}$ and $m(\angle ACB) = 45^{\circ}$. The angle bisector of $\angle CAB$ intersects $CB$ at point $D$. We consider the point $E \in (AB)$, such that $DE = DC$. Let $P$ be the intersection of lines $AD$ and $CE$. Prove that $P$ is the midpoint of segment $AD$.