Problem

Source: Shortlist BMO 2019, A4

Tags: Inequality, algebra, inequalities, n-variable inequality



Let $a_{ij}, i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$ be positive real numbers. Prove that \[ \sum_{i = 1}^m \left( \sum_{j = 1}^n \frac{1}{a_{ij}} \right)^{-1} \le \left( \sum_{j = 1}^n \left( \sum_{i = 1}^m a_{ij} \right)^{-1} \right)^{-1} \]