Problem

Source: Shortlist BMO 2019, G4

Tags: geometry, orthocenter, Projective



Given an acute triangle $ABC$, let $M$ be the midpoint of $BC$ and $H$ the orthocentre. Let $\Gamma$ be the circle with diameter $HM$, and let $X,Y$ be distinct points on $\Gamma$ such that $AX,AY$ are tangent to $\Gamma$. Prove that $BXYC$ is cyclic.