Problem

Source: Problem 1, BMO 2020

Tags: geometry, BMO



Let $ABC$ be an acute triangle with $AB=AC$, let $D$ be the midpoint of the side $AC$, and let $\gamma$ be the circumcircle of the triangle $ABD$. The tangent of $\gamma$ at $A$ crosses the line $BC$ at $E$. Let $O$ be the circumcenter of the triangle $ABE$. Prove that midpoint of the segment $AO$ lies on $\gamma$. Proposed by Sam Bealing, United Kingdom