Problem

Source: 2021HKTST2 Q2

Tags: algebra, polynomial, roots



Let $f(x)$ be a polynomial with rational coefficients, and let $\alpha$ be a real number. If \[\alpha^3-2019\alpha=(f(\alpha))^3-2019f(\alpha)=2021,\]prove that $(f^n(\alpha))^3-2019f^n(\alpha)=2021$ for any positive integer $n$. (Here, we define $f^n(x)=\underbrace{f(f(f\cdots f}_{n\text{ times}}(x)\cdots ))$.)