Given the circle $C_{1}$, midpoint $O_{1}(0,0)$ and radius $2r$, see drawing.
Given the circle $C_{2}$, midpoint $O_{2}(a,0)$ and radius $r$.
Point $A \in C_{1}$, points $B \in C_{2},\ C \in C_{2}$.
$\triangle ABC$ with center of gravity $F$.
Locus of the point $F$, if $A$, $B$ and $C$ move on their circles: those are three independent variables.
We try to eliminate one variable; if the points $B$ and $C$ move, the midpoint $D$ lies on and inside the circle $C_{2}$.
Instead of $B$ and $C$, we take a point on the circle $D_{0}(a+r\cos \alpha,r\sin \alpha)$.
First $A_{1}(2r,0)$ (in blue). We use $A_{1}F=2 \cdot FD_{0}$, giving $\left\{\begin{array}{ll} 3x_{F}=x_{A_{1}}+2x_{D_{0}} \\ 3y_{F}=y_{A_{1}}+2y_{D_{0}} \end{array}\right.$
Eliminating, $(\frac{3x}{2}-a)^{2}+(\frac{3y}{2}-r)^{2}=r^{2}$ (in blue), all points inside this circle belong to the locus.
Secondly $A_{2}(0,2r)$ (in green), same method, $(\frac{3x}{2}-a-r)^{2}+(\frac{3y}{2})^{2}=r^{2}$ (in green).
Idem, $A_{3}$ and circle (in red) and $A_{4}$ and circle (in light blue).
The wanted locus is the circle (in black), midpoint $O(\frac{2a}{3},0)$ and radius $\frac{4}{3}r$.
Attachments: