Problem

Source: 2018 Thailand TST 1.4

Tags: geometry, rectangle, colinear, orthocenter, Circumcenter



Let $\vartriangle ABC$ be an acute triangle with altitudes $AA_1, BB_1, CC_1$ and orthocenter $H$. Let $K, L$ be the midpoints of $BC_1, CB_1$. Let $\ell_A$ be the external angle bisector of $\angle BAC$. Let $\ell_B, \ell_C$ be the lines through $B, C$ perpendicular to $\ell_A$. Let $\ell_H$ be the line through $H$ parallel to $\ell_A$. Prove that the centers of the circumcircles of $\vartriangle A_1B_1C_1, \vartriangle AKL$ and the rectangle formed by $\ell_A, \ell_B, \ell_C, \ell_H$ lie on the same line.