Let $E$ and $F$ be points on side $BC$ of a triangle $\vartriangle ABC$. Points $K$ and $L$ are chosen on segments $AB$ and $AC$, respectively, so that $EK \parallel AC$ and $FL \parallel AB$. The incircles of $\vartriangle BEK$ and $\vartriangle CFL$ touches segments $AB$ and $AC$ at $X$ and $Y$ , respectively. Lines $AC$ and $EX$ intersect at $M$, and lines $AB$ and $FY$ intersect at $N$. Given that $AX = AY$, prove that $MN \parallel BC$.