Problem

Source: 2019 Thailand TST 3.3

Tags: geometry, Strategy, game, winning strategy, combinatorics



Let $ABC$ be any triangle with $\angle BAC \le \angle ACB \le \angle CBA$. Let $D, E$ and $F$ be the midpoints of $BC, CA$ and $AB$, respectively, and let $\epsilon$ be a positive real number. Suppose there is an ant (represented by a point $T$ ) and two spiders (represented by points $P_1$ and $P_2$, respectively) walking on the sides $BC, CA, AB, EF, FD$ and $DE$. The ant and the spiders may vary their speeds, turn at an intersection point, stand still, or turn back at any point; moreover, they are aware of their and the others’ positions at all time. Assume that the ant’s speed does not exceed $1$ mm/s, the first spider’s speed does not exceed $\frac{\sin A}{2 \sin A+\sin B}$ mm/s, and the second spider’s speed does not exceed $\epsilon$ mm/s. Show that the spiders always have a strategy to catch the ant regardless of the starting points of the ant and the spiders. Note: the two spiders can discuss a plan before the hunt starts and after seeing all three starting points, but cannot communicate during the hunt.