Problem

Source: Latvian TST for Baltic Way 2020 P2

Tags: function, Functional equation in R, algebra



Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy equation: $$ f(x^3+y^3) =f(x^3) + 3x^2f(x)f(y) + 3f(x)f(y)^2 + y^6f(y) $$for all reals $x,y$