Problem

Source: 2021HKTST1 Q6

Tags: combinatorics



There is an $n\times n$ chessboard where $n\geq 4$ is a positive even number. The cells of the chessboard are coloured black and white such that adjacent cells sharing a common side have different colours. Let $A$ and $B$ be two interior cells (which means cells not lying on an edge of the chessboard) of distinct colours. Prove that a chess piece can move from $A$ to $B$ by moving across adjacent cells such that every cell of the chessboard is passed through exactly once.