Problem

Source: 2021HKTST1 Q3

Tags: combinatorics, coins, Operations



On the table there are $20$ coins of weights $1,2,3,\ldots,15,37,38,39,40$ and $41$ grams. They all look alike but their colours are all distinct. Now Miss Adams knows the weight and colour of each coin, but Mr. Bean knows only the weights of the coins. There is also a balance on the table, and each comparison of weights of two groups of coins is called an operation. Miss Adams wants to tell Mr. Bean which coin is the $1$ gram coin by performing some operations. What is the minimum number of operations she needs to perform?