Prove the inequality $ \sqrt {2 + \sqrt [3]{3 + ... + \sqrt [{2008}]{2008}}} < 2$
Problem
Source:
Tags: inequalities
parmenides51
26.08.2024 09:13
Prove the inequality $$ \sqrt {2 + \sqrt [3]{3 + ... + \sqrt [{1993}]{1993}}} < 2$$ All-Russian MO 1993 Regional (Round 4) 10.6
the.math.king
26.08.2024 09:25
Generalization: $\sqrt{2+\sqrt[3]{3+...+\sqrt[n]{n}}}<2$
RagvaloD
26.08.2024 12:28
$\sqrt[n]{n+2} \leq 2$ for $n \geq 2$ Easy to prove by induction $\sqrt{2+\sqrt[3]{3+...+\sqrt[n]{n}}}<\sqrt{2+\sqrt[3]{3+...+\sqrt[n]{n+2}}} \leq \sqrt{2+\sqrt[3]{3+...+\sqrt[n-1]{n-1+2}}} \leq... \leq \sqrt{2+2}=2$