Solve in positive numbers the system $ x_1+\frac{1}{x_2}=4, x_2+\frac{1}{x_3}=1, x_3+\frac{1}{x_4}=4, ..., x_{99}+\frac{1}{x_{100}}=4, x_{100}+\frac{1}{x_1}=1$
Problem
Source:
Tags: inequalities
Bovy11
08.10.2008 22:14
outback wrote: Solve in positive numbers the system $ x_1 + \frac {1}{x_2} = 4, x_2 + \frac {1}{x_3} = 1, x_3 + \frac {1}{x_4} = 4, ..., x_{99} + \frac {1}{x_{100}} = 4, x_{100} + \frac {1}{x_1} = 1$
Let $ y_i = \frac {x_i}{2}$(if $ i$=odd)and $ y_i = 2x_i$(if $ i$ is even),the system is equivalent to
$ y_1 + \frac {1}{y_2} = 2, y_2 + \frac {1}{y_3} = 2, y_3 + \frac {1}{y_4} = 2, ..., y_{99} + \frac {1}{y_{100}} = 2, y_{100} + \frac {1}{y_1} = 2$.
Sum all each hands,we have
$ (y_1 + \frac {1}{y_1}) + (y_2 + \frac {1}{y_2}) + \cdots + (y_{99} + \frac {1}{y_{99}}) + (y_{100} + \frac {1}{y_{100}}) = 200$.
By AM-GM inequality, $ y_i + \frac {1}{y_i}\ge 2$ holds for all $ i$,thus we have
$ (y_1 + \frac {1}{y_1}) + (y_2 + \frac {1}{y_2}) + \cdots + (y_{99} + \frac {1}{y_{99}}) + (y_{100} + \frac {1}{y_{100}})\ge 200$
therefore,the equality of the AM-GM must holds for all $ i$,so we have $ y_1 = y_2 = \cdots = y_{100} = 1$ and we see the solution $ \boxed{x_1 = x_3 = \cdots = x_{99} = 2, x_2 = x_4 = \cdots = x_{100} = \frac {1}{2}}$.
t0rajir0u
08.10.2008 22:37
Was $ x_{100} + \frac{1}{x_1} = 1$ a typo?
outback
09.10.2008 03:32
t0rajir0u wrote: Was $ x_{100} + \frac {1}{x_1} = 1$ a typo? Why do you think it is?