A natural number $k>1$ is given. The sum of some divisor of $k$ and some divisor of $k - 1$ is equal to $a$,where $a>k + 1$. Prove that at least one of the numbers $a - 1$ or $a + 1$ composite.
Source: 2016 239 J1
Tags: number theory
A natural number $k>1$ is given. The sum of some divisor of $k$ and some divisor of $k - 1$ is equal to $a$,where $a>k + 1$. Prove that at least one of the numbers $a - 1$ or $a + 1$ composite.