Problem

Source: 2019 Portugal p5

Tags: geometry, circumcircle, equal segments



Let $[ABC]$ be a acute-angled triangle and its circumscribed circle $\Gamma$. Let $D$ be the point on the line $AB$ such that $A$ is the midpoint of the segment $[DB]$ and $P$ is the point of intersection of $CD$ with $\Gamma$. Points $W$ and $L$ lie on the smaller arcs $\overarc{BC}$ and $\overarc{AB}$, respectively, and are such that $\overarc{BW} = \overarc{LA }= \overarc{AP}$. The $LC$ and $AW$ lines intersect at $Q$. Shows that $LQ = BQ$.