Problem

Source: V.A. Yasinsky Geometry Olympiad 2020 VIII-IX p6 , Ukraine

Tags: geometry, incenter, square, angle bisector



Let $ABCD$ be a square, point $E$ be the midpoint of the side $BC$. The point $F$ belongs to the side $AB$, and $DE \perp EF$. The point $G$ lies inside the square, and $GF = FE$ and $GF \perp FE$. Prove that: a) $DE$ is the bisector of the $\angle FDC$ b) $FG$ is the bisector of the $\angle AFD$ c) the point $G$ is the center of the circle inscribed in the triangle $ADF$. (Ercole Suppa, Italy)