Problem

Source: 2nd Final Mathematical Cup Senior Division P3 (2020)

Tags: combinatorics, invariant



Given a paper on which the numbers $1,2,3\dots ,14,15$ are written. Andy and Bobby are bored and perform the following operations, Andy chooses any two numbers (say $x$ and $y$) on the paper, erases them, and writes the sum of the numbers on the initial paper. Meanwhile, Bobby writes the value of $xy(x+y)$ in his book. They were so bored that they both performed the operation until only $1$ number remained. Then Bobby adds up all the numbers he wrote in his book, let’s call $k$ as the sum. $a$. Prove that $k$ is constant which means it does not matter how they perform the operation, $b$. Find the value of $k$.