Problem

Source: Italy TST 2000

Tags: combinatorics unsolved, combinatorics



On a mathematical competition $ n$ problems were given. The final results showed that: (i) on each problem, exactly three contestants scored $ 7$ points; (ii) for each pair of problems, exactly one contestant scored $ 7$ points on both problems. Prove that if $ n \geq 8$, then there is a contestant who got $ 7$ points on each problem. Is this statement necessarily true if $ n = 7$?