Problem

Source:

Tags: geometry, geometric transformation, homothety, ratio, circumcircle, analytic geometry, inequalities



Let $ ABC$ a triangle and $ X$, $ Y$ and $ Z$ points at the segments $ BC$, $ AC$ and $ AB$, respectively.Let $ A'$, $ B'$ and $ C'$ the circuncenters of triangles $ AZY$,$ BXZ$,$ CYX$, respectively.Prove that $ 4(A'B'C')\geq(ABC)$ with equality if and only if $ AA'$, $ BB'$ and $ CC'$ are concurrents. Note: $ (XYZ)$ denotes the area of $ XYZ$