Problem

Source: IMO 2020 Problem 1

Tags: geometry, IMO



Consider the convex quadrilateral $ABCD$. The point $P$ is in the interior of $ABCD$. The following ratio equalities hold: \[\angle PAD:\angle PBA:\angle DPA=1:2:3=\angle CBP:\angle BAP:\angle BPC\]Prove that the following three lines meet in a point: the internal bisectors of angles $\angle ADP$ and $\angle PCB$ and the perpendicular bisector of segment $AB$. Proposed by Dominik Burek, Poland