Determine if there exists a finite set $A$ of positive integers satisfying the following condition: for each $a\in{A}$ at least one of two numbers $2a$ and $\frac{a}{3}$ belongs to $A$.
Source: Caucasus 2020 Seniors Day 1/ P1
Tags: number theory
Determine if there exists a finite set $A$ of positive integers satisfying the following condition: for each $a\in{A}$ at least one of two numbers $2a$ and $\frac{a}{3}$ belongs to $A$.